Риманова геометрия

Ри́манова геоме́трия — это раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, т. е. гладкие многообразия с дополнительной структурой, римановой метрикой, т. е. с выбором евклидовой метрики на каждом касательном пространстве, которая гладко меняется от точки к точке.

Основным подразделом римановой геометрии является геометрия в целом, раздел который выявляет связь глобальных свойств риманова многообразия, как то топология или диаметр или объём, и его локальных свойств, как то ограничений на кривизну.

История

Родоначальником римановой геометрии является немецкий математик Бернхард Риман, который изложил её основные понятия в 1854 году.

После опубликования работ Римана его идеи привлекли внимание ряда математиков, которые развивали дальше аналитический аппарат римановой геометрии и устанавливали в ней новые геометрические теоремы. Важным вкладом в развитие римановой геометрии было создание итальянскими геометрами Риччи-Курбастро и его учеником Леви-Чивита на рубеже XX века тензорного исчисления, которое оказалось наиболее подходящим аналитическим аппаратом. Решающее значение имело применение римановой геометрии в создании общей теории относительности. Это привело к бурному развитию римановой геометрии и её разнообразных обобщений. В настоящее время риманова геометрия вместе с её обобщениями представляет собой обширную область геометрии, которая продолжает успешно развиваться.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home