Неравенство Коши — Буняковского

Нера́венство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением.

Неравенство Коши — Буняковского иногда, особенно в иностранной литературе, называют неравенством Шварца, хотя работы Шварца (Schwarz) на эту тему появились только спустя 25-50 лет после работ Буняковского (1859). Конечномерный случай этого неравенства называется неравенством Коши и был доказан Коши в 1821 году.

Формулировка

Пусть дано линейное пространство L со скалярным произведением \langle \cdot, \cdot \rangle. Пусть \|\cdot\| - норма, порождённая скалярным произведением, то есть \|x\| \equiv \sqrt{\langle x, x \rangle},\; \forall x \in L. Тогда для любых x,y\in L имеем

|\langle x, y\rangle| \le \|x\| \cdot \|y\|.

Примеры

\left| \sum\limits_{k=1}^{\infty} x_k \bar{y}_k \right| ^2 \le \left( \sum_{k=1}^{\infty} |x_k|^2 \right) \cdot \left( \sum_{k=1}^{\infty} |y_k|^2 \right),
где \bar{y}_k обозначает комплексное сопряжение yk.
\left|\int\limits_X f(x)\overline{g(x)}\,\mu(dx)\right|^2\leq \left(\int\limits_X \left|f(x)\right|^2\,\mu(dx)\right) \cdot \left(\int\limits_X\left|g(x)\right|^2\,\mu(dx)\right).
\mathrm{cov}^2(X,Y) \le \mathrm{D}[X] \cdot \mathrm{D}[Y],
где cov обозначает ковариацию, а D дисперсию.

Литература

  • Bounjakowsky W., «Mémoires de l’Académie des sciences de St-Pétersbourg. 7 série», 1859, t. 1, № 9.
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home