Интерпретация

Интерпрета́ция (лат. interpretatio), истолкование, объяснение, разъяснение.

  1. В буквальном понимании термин «И

Текст заголовка

нтерпретация» (в контексте "толкования") употребляется в юриспруденции (например, интерпретация закона адвокатом или судьей — это «перевод» «специальных» выражений, в которых сформулирована та или иная статья кодекса, на «общежитейский» язык, а также рекомендации по её применению), искусстве (интерпретация роли актёром или музыкального произведения пианистом — индивидуальная трактовка исполнителем исполняемого произведения, не определяемая, вообще говоря, однозначно замыслом автора) и в других областях человеческой деятельности.

  1. Интерпретация в математике, логике, методологии науки, теории познания — совокупность значений (смыслов), придаваемых тем или иным способом элементам (выражениям, формулам, символам и т. д.) какой-либо естественнонаучной или абстрактно-дедуктивной теории (в тех же случаях, когда такому «осмыслению» подвергаются сами элементы этой теории, то говорят также об интерпретации символов, формул и т. д.).
  2. В области информационных технологий, интерпретация — процесс выполнения текста программы без предварительной компиляции, «на лету». В большинстве случаев интерпретация намного медленнее работы уже скомпилированной программы.

Понятие «Интерпретация» имеет большое гносеологическое значение: оно играет важную роль при сопоставлении научных теорий с описываемыми ими областями, при описании разных способов построения теории и при характеристике изменения соотношения между ними в ходе развития познания. Поскольку каждая естественнонаучная теория задумана и построена для описания некоторой области реальной действительности, эта действительность служит её (теории) «естественной» интерпретацией. Но такие «подразумеваемые» интерпретации не являются единственно возможными даже для содержательных теорий классической физики и математики; так, из факта изоморфизма механических и электрических колебательных систем, описываемых одними и теми же дифференциальными уравнениями, сразу же следует, что для таких уравнений возможны по меньшей мере две различные интерпретации. В ещё большей степени это относится к абстрактно-дедуктивным логико-математическим теориям, допускающим не только различные, но и не изоморфные интерпретации. Об их «естественных» интерпретациях говорить вообще затруднительно. Абстрактно-дедуктивные теории могут обходиться и без «перевода» своих понятий на «физический язык». Например, независимо от какой бы то ни было физической интерпретации, понятия геометрии Лобачевского могут быть интерпретированы в терминах геометрии Евклида. Открытие возможности взаимной интерпретируемости различных дедуктивных теорий сыграло огромную роль как в развитии самих дедуктивных наук (особенно как орудие доказательства их относительной непротиворечивости), так и в формировании связанных с ними современных теоретико-познавательных концепций.

См. также

  • Аксиоматический метод
  • Логика
  • Логическая семантика
  • Модель
  • Интерпретируемые языки программирования
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home